Rutgers University: Algebra Written Qualifying Exam

 January 2016: Problem 1 SolutionExercise. Let $P(x) \in \mathbb{Z}[x]$ be a polynomial with integer coefficients, and assume that $P(0)$ and $P(1)$ are odd integers. Prove that $P(x)$ has no integer roots.

Solution.

$$
\begin{array}{rlrl}
P(x) & =a_{n} x^{n}+\cdots+a_{1} x+a_{0} \quad a_{i} \in \mathbb{Z} \\
P(0) & =a_{0} \text { is odd } & \text { and } \quad P(1)=a_{n}+\cdots+a_{1}+a_{0} \text { is odd } \\
\Longrightarrow P(1)-P(0) & =a_{n}+\cdots+a_{1} \text { is even }
\end{array}
$$

\Longrightarrow an even number of $a_{i} \in\left\{a_{n}, \ldots, a_{1}\right\}$ are odd
$m \in \mathbb{Z}$ is a root of $P(x) \Longleftrightarrow P(m)=0$
If $m \in \mathbb{Z}$ is even, then $P(m)=a_{n} m^{n}+\cdots+a_{1} m+a_{0}=m\left(a_{n}+\cdots+a_{1}\right)+a_{0}$ is odd

$$
\Longrightarrow P(m) \neq 0
$$

If $m \in \mathbb{Z}$ is odd, then $a_{i} m^{i}$ is odd IFF a_{i} is odd.
But there is an even number of $a_{i} \in\left\{a_{n}, \ldots, a_{1}\right\}$ s.t. a_{i} is odd.
\Longrightarrow There is an even number of $a_{i} m^{i} \in\left\{a_{n} m^{n}, \ldots, a_{1} m\right\}$ s.t. $a_{i} m^{i}$ is odd.
$\Longrightarrow a_{n} m^{n}+\cdots+a_{1} m$ is even
$\Longrightarrow P(m)=a_{n} m^{n}+\cdots+a_{1} m+a_{0}$ is odd
$\Longrightarrow P(m) \neq 0$
Thus, $P(x)$ has no integer roots.

