Rutgers University: Algebra Written Qualifying Exam January 2016: Problem 1 Solution

Exercise. Let $P(x) \in \mathbb{Z}[x]$ be a polynomial with integer coefficients, and assume that P(0) and P(1) are odd integers. Prove that P(x) has no integer roots.

Solution.
$P(x) = a_n x^n + \dots + a_1 x + a_0 a_i \in \mathbb{Z}$
$P(0) = a_0$ is odd and $P(1) = a_n + \dots + a_1 + a_0$ is odd
$\implies P(1) - P(0) = a_n + \dots + a_1$ is even
\implies an even number of $a_i \in \{a_n, \dots, a_1\}$ are odd
$m \in \mathbb{Z}$ is a root of $P(x) \iff P(m) = 0$
$m \in \mathbb{Z}$ is a root of $\Gamma(x) \longleftrightarrow \Gamma(m) = 0$
If $m \in \mathbb{Z}$ is even, then $P(m) = a_n m^n + \dots + a_1 m + a_0 = m(a_n + \dots + a_1) + a_0$ is odd
$\implies P(m) \neq 0$
If $m \in \mathbb{Z}$ is odd, then $a_i m^i$ is odd IFF a_i is odd.
But there is an even number of $a_i \in \{a_n, \ldots, a_1\}$ s.t. a_i is odd.
\implies There is an even number of $a_i m^i \in \{a_n m^n, \dots, a_1 m\}$ s.t. $a_i m^i$ is odd.
$\implies a_n m^n + \dots + a_1 m$ is even
$\implies P(m) = a_n m^n + \dots + a_1 m + a_0$ is odd
$\implies P(m) \neq 0$
Thus, $P(x)$ has no integer roots.